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Abstract The entropic principles of information theory are used for defining
molecular fragments. The additive and non-additive components of the entropy-defi-
ciency and Fisher-information functionals are introduced. The implications of the
adopted constraints for predicted in situ charge sensitivities of molecular fragments
in donor–acceptor systems are examined and the exhaustive, local partitioning of the
molecular electron/probability density into atomic pieces is discussed as an illustration.
The alternative information principles using the free-atom references, which define
the atomic “promolecule”, formulated in terms of the local electron density/probabil-
ity of bonded atoms and their share/enhancement factors, are shown to give rise the
stockholder partitioning of Hirshfeld. It is alternatively characterized by the common
(subsystem independent), molecular local enhancements for each bonded atom or by
the equality of the molecular and promolecular share factors. This unbiased division
is shown to exactly remove the non-additive component of the missing-information
of electron probabilities; in the conditional probability representation the entropy-
deficiency of stockholder atoms is shown to generate the exactly vanishing additive
component. The additivity of information contributions in the hypothetical (non-
interacting) Kohn-Sham (KS) system in the resolution defined by the KS molecular
orbitals (MO) is stressed and their non-additivity in the atomic-orbital (AO) resolution
is emphasized. The non-additive Fisher information of the real (interacting) molecular
system in both the MO and AO resolutions is then examined: the former is linked to
the electron localization function (ELF) while the latter defines the so called contra-
gradience (CG) criterion for localizing chemical bonds in the molecule. The bonding
basins of the negative CG density in the valence-shell identify regions of an increased
electron delocalization due to formation of the chemical bond. Representative plots of
these local probes of the molecular electron distributions are presented and discussed.
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1 Introduction

In modern Density Functional Theory (DFT) [1–5] the ground-state density ρ(r) =
ρ[v(R); r] ≡ ρ(r; R), or in a shortened notation ρ = ρ[v], representing the equi-
librium distribution of electrons for the current Born-Oppenheimer (BO) external
potential v(r) due to the system nuclei in their fixed positions R = {Rα} (the atomic
units are used throughout), v(r) = −∑α Zα/|r−Rα|,where {Zα} denote the nuclear
charges, replaces the associated wave function � = �[v] as the system basic state-
variable. More specifically, it follows from the celebrated Hohenberg-Kohn (HK) the-
orems [1] that for the non-degenerate electronic state ρ uniquely determines the shape
of the system external potential itself, v = v[ρ], and hence the electronic Hamiltonian
of the N -electron molecular system,

Ĥ(N , v) =
N∑

i=1

v(ri )+ [T̂(N )+ V̂ee(N )] ≡ V̂ne(N )+ F̂(N ) = Ĥ[ρ], (1)

and its ground-state wave function, �[N , v] = �[ρ[v]]. Here the set {ri } groups
the electronic positions, the operator V̂ne(N ) corresponds to the electron-nuclear
attraction energy, and F̂(N ) = T̂(N ) + V̂ee(N ) combines the operators of the elec-
tronic kinetic energy, T̂(N ) = − 1

2

∑N
i=1 ∇2

i , and the Coulomb repulsion energy,

V̂ee(N ) = ∑N−1
i=1

∑N
j=i+1 |ri − r j |−1. The equilibrium (v-representable) density thus

determines the expectation value of the system electronic energy:

Ev[ρ[v]] =
∫

v(r)ρ(r)dr + 〈�[ρ[v]]|F̂|�[ρ[v]]〉 ≡ Vne[ρ] + FHK[ρ], (2)

which satisfies the variational principle of the second HK theorem:

Ev[ρ[v]] ≤ Ev[ρ′[v′]], v′(r) �= v(r)+ const. (3)

To summarize, in this non-degenerate scenario the ground-state density in princi-
ple determines the system wave function � = �[ρ] and hence also the expectation
value A[ρ] = 〈�[ρ]|Â|�[ρ]〉 of any physical observable Â, e.g., of the system elec-
tronic energy: Ev[ρ] = 〈�[ρ]|Ĥ[ρ]|�[ρ]〉. In other words, the equilibrium electron
distribution then carries the complete information about the molecular system in ques-
tion: its electronic structure, trends in chemical reactivity, a pattern of chemical bonds
(inter-atomic “connectivities”), etc.

However, as argued elsewhere [6–14], the informed decisions about the exhaus-
tive division of the molecular density into pieces describing molecular fragments,
ρ(r; R) ≡ {ρα(r; R)}, in terms of which chemists often formulate their hypotheses,
e.g., Atoms-in-molecules (AIM), functional groups, the (σ/π)-electron subsystems,
reactants, etc.,
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ρ(r; R) =
∑

α

ρα(r; R), (4)

can be effected only by using the alternative subsidiary criteria, e.g., topological [15]
or information-theoretic [6–14] in character.

The techniques and concepts of the Information Theory (IT) of Fisher, Shannon
and others [16–23] have indeed been shown to provide novel, efficient tools for tack-
ling diverse problems in the theory of molecular electronic structure. Among other
developments, the IT definition of bonded atoms [6–14,24] gives rise to Hirshfeld’s
[25] “stockholder” division of the molecular electron distribution into atomic frag-
ments. In search for the entropic origins of the chemical bond the information content
of electronic distributions in molecules has been examined [6,10–14] and the ther-
modynamic-like description of the electronic “gas” in molecular systems has been
developed [6,26–28].

The Shannon theory of communication [19–21] has been successfully applied to
probe bonding patterns in molecules within the Communication Theory of the Chem-
ical Bond (CTCB) in atomic resolution [6,29–36] and in its orbital formulation, the
Orbital Communication Theory (OCT) [37–40]. The key concept of this IT approach
is the molecular information system, which can be constructed at alternative levels
of resolving the electron probabilities into contributions attributed to the underly-
ing (mutually exclusive) fragments determining the channel “inputs” and “outputs”.
For example, the molecular probability distribution can be resolved into probabilities
of finding an electron on the basis-set orbital, AIM, molecular fragment, etc. Such
molecular information channels can be generated within both the local and condensed
descriptions of the electronic distribution in the molecule. Such networks describing
the probability/information propagation in a molecule can be characterized by the
standard quantities developed in IT for real communication devices.

Due to electron delocalization throughout the chemical bonds in a molecule, the
transmission of “signals” about the electron-assignment to the underlying units of
the resolution in question becomes randomly disturbed, thus exhibiting the commu-
nication “noise”. Indeed, an electron initially attributed to the given atom/orbital in
the channel input (molecular or promolecular) can be later found with a non-zero
probability at several locations in the molecular “output”. This feature of the elec-
tron delocalization is embodied in the conditional probability matrix of the outputs
given inputs defining the molecular channel. Both the one-electron and two-electron
approaches have been devised to generate the information networks in molecules. The
latter [6,29–36] uses the simultaneous probabilities of two electrons in a molecule,
assigned to the input and output, respectively, to determine the conditional proba-
bilities between bonded atoms, while the former [37–42] constructs the orbital-pair
probabilities using the familiar superposition principle of quantum mechanics [43].
This development has widely explored the use of the average communication-noise
(delocalization, indeterminacy) and information-flow (localization, determinacy) indi-
ces as novel descriptors of the overall IT covalency and ionicity, respectively. Both
chemical bonds of the molecular system as a whole and the internal bonds present
in its constituent subsystems as well as the external, inter-fragment bonds can be
characterized using these communication descriptors.
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The Information Theory (IT) thus provides an efficient tool for an extraction of the
chemical interpretation in terms of molecular fragments from the molecular quantum-
mechanical descriptors [6]. The atomic pieces of the molecular electron densities, so
important for the chemical epistemology, are in fact Kantian noumenons [24] so that
an additional (entropy/information) level of the IT variational principles is required
for an objective extraction of the chemical interpretation of the known molecular dis-
tributions of electrons in terms of bonded-atoms as building blocks of molecules.
These atomic fragments are known to retain most of the “information” contained in
the free atoms of the periodic table of elements, exhibiting only subtle changes in
their valence shells due to the intra-atom “promotion”/hybridization (polarization, P)
and the inter-atomic charge transfer (CT), relative to the atomic “promolecule”, con-
sisting of the free-atom distributions ρ0(r; R) = {ρ0

α(r; Rα)} placed in the molecular
locations of constituent atoms. These changes are reflected by the familiar density
difference (deformation density),

�ρ(r; R) = ρ(r; R)− ρ0(r; R), (5)

where the promolecular electron distribution

ρ0(r; R) =
∑

α

ρ0
α(r; Rα). (6)

An illustrative case of such IT principles in the Shannon theory, using only the inter-
atomic (non-additive, bonding) information components, will be discussed in the first
part of the present analysis. These information measures are devoid of the intra-atomic
(additive, non-bonding) information terms thus focusing on the truly bonding effects.

In quantum chemistry the analysis of the physical origins of the chemical bond con-
stitutes one of the primary goals. The familiar virial theorem [44–46] decomposition
of the diatomic Born-Oppenheimer potential indicates that for the equilibrium bond
length it is the overall (negative) change in its potential component, due to a contrac-
tion of constituent atoms in the presence of each other, which is ultimately responsible
for the net stabilizing (bonding) effect. The associated change in the overall kinetic
energy is negative at an earlier stage of the mutual approach by both atoms, when it
is dominated by the longitudinal contribution associated with the gradient component
along the bond axis; it ultimately assumes the destabilizing (antibonding) character
at the equilibrium internuclear separation, mainly due to its transverse contribution
associated with the gradient components in the directions perpendicular to the bond
axis [47–51]. This overall virial theorem perspective thus indicates that the kinetic
energy constitutes the driving force of the bond-formation process at its early stage.

These variations in the total energy components combine the delicate (truly bond-
ing) inter-atomic effects originating from the stabilizing combinations of atomic orbi-
tals (AO) in the occupied molecular orbitals (MO), which determine the effective
bonding patterns in the molecule, and the accompanying processes of the intra-atomic
polarization, which involve both the nonbonding (lone) pairs of both the inner- and
outer-shell electrons. Therefore, these energy contributions effectively hide the min-
ute changes in the system valence-shell, which are associated by chemists with the
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chemical bond concept. Thus, some partitioning of these overall energy contributions
is called for in order to separate these subtle bonding phenomena from the associated
promotion of bonded atoms. For example, the alternative perspective on variations in
the kinetic energy component, say of the covalent-bond in H2, is to partition it into
the (negative) gradient component determined for the fixed scaling factor (effective
charge of the nuclei) of the separated-atom orbitals, manifesting the bonding combina-
tion of AO in MO and the remaining contraction contribution, reflecting the optimum
scaling of the basis functions. It follows from the classical analysis by Ruedenberg and
co-workers [49–51] that the contraction of the atomic electron distributions is possible
in molecule due to the relative lowering of the kinetic energy in the bonding region
between the two nuclei, as reflected by both the longitudinal and transverse gradient
components of the average electronic kinetic energy. Therefore, the whole process of
redistributing electrons during formation of the chemical bond can be also regarded
as being “catalyzed” by the kinetic energy gradient effect.

Both these perspectives thus emphasize the fundamental role of the kinetic energy
in the chemical bond formation process. A similar conclusion follows from the theo-
retical analysis by Goddard and Wilson [52]. It should be recalled that the expectation
value of this energy component is proportional to the system average Fisher infor-
mation contained in electronic distribution [53–55]. Indeed, the molecular quantum
mechanics and IT are related through the Fisher [16–18] (locality) measure of infor-
mation [55–58], which represents the gradient content of the system wave-function,
thus being proportional to the average kinetic energy of electrons. The stationary
Schrödinger equation marks the optimum probability amplitude of the Fisher infor-
mation principle including the constraint of the fixed value of the system potential
energy. The electron localization function (ELF) [59] has been shown to explore the
non-additive part of this information measure in the MO resolution [6,60], while a
similar approach in the AO representation [61] generates the so called contra-gradi-
ence (CG) criterion [55] for localizing chemical bonds in molecules. It is determined
by the AO representation of the electronic kinetic-energy operator.

It should be realized that each resolution (4) of the molecular electron density/prob-
ability distribution implies the associated division of the molecular (total) physical
quantity A[ρ] into its additive, Aadd.[ρ], and non-additive, Anadd.[ρ], contributions:

A[ρ] = Atotal[ρ] = Aadd.[ρ] + Anadd.[ρ], Aadd.[ρ] =
∑

α

A[ρα]. (7)

We have indicated above that in the underlying multi-component system A[ρ] becomes
the functional of the whole vector of the subsystem densities [62]: A[ρ] = Atotal[ρ].

For example, this Gordon-Kim-type division [63] of the kinetic energy functional
defines the non-additive contribution which constitutes the basis of the DFT embed-
ding concept of Cortona [64] and Wesołowski [65–67]. Such division can also be
used to partition the information quantities themselves [6,13,60,61]. In particular,
the inverse of the non-additive Fisher information in the MO resolution [60] has been
shown to define the IT-ELF concept, in the spirit of the original Becke and Edgecombe
formulation [59], while the related quantity in the AO resolution of the Self-Consistent
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Field (SCF) MO theory offers the key CG criterion for localization of chemical bonds
in molecular systems [55,61].

In the ensuing pages we shall further explore the implications of such non-additive
information terms for properties of molecular fragments resulting from the entropic
principles of IT and for the electron/bond localization in molecules. The illustrative
examples of the IT-ELF plots and the patterns of bonding regions from the CG probe
will also be reported.

2 Entropic rules for molecular partitioning and charge sensitivities of reactants

A general form of such information principles [6,54–58] involves some information
functional I [p] of the overall electron probability distribution ρ(r), the shape function
of the electron density, ρ(r) = N p(r), or functionals I [p(π)] of fragment distributions
p(π; r) = {pα(r) = p(r)P(α|r)} in the given partitioning π of the molecule, p(r) =∑
α pα(r); here, P(α|r) stands for the conditional probability that an electron found

at position r is attributed to fragment α. Alternatively, the functionals of the electron
density I [ρ] or of its pieces ρ(π; r) = {ρα(r) = N pα(r)}, I [ρ(π)], can be employed
in the entropic principles. In the local partitioning problems, of dividing the molecular
distribution density at the fixed position in space, one accordingly uses the densities
of these information functionals: I (p(r)), I (ρ(r)) or {I (p(π; r)) or I (ρ(π; r))}.

Above we have indicated that the subsystem distributions of the π division of the
whole molecule into fragments defining the associated multi-component system are
determined by the partition conditional probabilities P(π |r) = {P(α|r)},

P(π |r) = {P(α|r) = pα(r)/p(r) = ρα(r)/ρ(r)} ,
ρα(r) = N pα(r),

∑

α

P(α|r) = 1, (8)

which are often defined with respect to some overall or fragment reference(s), q0(r)
or Q0(π |r) = {Q0(α|r)}. Therefore, in the conditional probability P(α|r), that an
electron at r originates from fragment α, the subsystem identity α thus represents the
distribution variable, while the second, spatial index r constitutes the parameter, as
indeed reflected by the normalization condition in the preceding equation.

The entropy/information variational principles then involve the optimization of
the subsystem probabilities in the relevant information functional (function), sub-
ject to the required normalization and/or physical constraints, e.g.,

{
Fi [p] = F0

i

}
or{

G j [P(π)] = G0
j

}
. For example, the overall entropic rules for probabilities in the

global and subsystem resolutions read:

δ
{

I [p] −
∑

i
λi Fi [p]

}
= 0 or δ

⎧
⎨

⎩
I [p(π)] −

∑

j

µ j G j [p(π)]
⎫
⎬

⎭
= 0, (9)

where λi and µi are the Lagrange multipliers enforcing the constraints related to the
constrained functionals Fi [p] and G j [P(π)], respectively. In the local-partitioning
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problems the corresponding functional densities replace functionals in the second of
the preceding entropy/information principles:

δ

{

I (p(π; r))−
∑

i

µ j (r)G j (p(π;r))
}

= 0 or

δ

⎧
⎨

⎩
I (P(π |r))−

∑

j

µ j (r)G j (P(π |r))
⎫
⎬

⎭
= 0. (10)

These local rules involve the Lagrange-multiplier functions {µi (r)}; the second of
them uses the conditional probabilities as local variables, which uniquely determine
the associated fragment electron densities ρ(π; r) and probabilities p(π; r). These
information rules assimilate in the optimum probabilities the relevant constraints and
maximize similarities to references involved in the least biased manner possible. The
specific values of Lagrange multipliers are subsequently determined from the values
of the constraints themselves:

λi = λi

({
F0

j

})
, µ j = µ j

({
G0

k

})
, µ j (r) = µ j

({
G0

k(r)
})
. (11)

It should be observed that the applied references, e.g., those used in the cross-
entropy of Kullback and Leibler [6,22,23], represent soft information “constraints”,
since they fix nothing; instead they only generate the overall similarity between the
optimized molecular probabilities and their initial distributions in the promolecule.
The hard constraints in Eqs. (9, 10), enforced by the associated Lagrange multipliers,
actually fix in the optimum solutions the associated normalization/physical quantities
at their prescribed values.

One should also recall at this point that the selected (hard) constraints of the rele-
vant information principle for determining the optimum, (unbiased) molecular frag-
ments may influence the charge sensitivities of the latter [68]. This is the case when
they define the prescribed value X0 of the differentiated state-parameter
X , e.g., the subsystem number of electrons X = N = {

Nα = ∫
ρα(r)dr

}
, in the deriva-

tive descriptors {	α(r) = ∂ρα(r)/∂Nα} defining the Fukui-function (FF)
indices of molecular fragments [3,68–74]. When the differentiation is carried out
with respect to the charge separation between reactants, measured by the amount NCT
of CT B→A between the A(acidic) and B(basic) reactants in the donor–acceptor
(DA) reactive system A—B, X = NCT, the associated derivatives define the reactant
contributionsΦCT(r) = {

ΦCT,α(r) = ∂ρα(r)/∂NCT, α = A,B
}

to the charge affinity
of DA system [68–75]: 	DA(r) = 	CT,A(r)−	CT,B(r).

The equilibrium condition in the energy representation alone, calling for the inter-
nal equalization of the chemical potentials (electronegativities) of the mutually-closed
subsystems, is insufficient to define the equilibrium partitioning of the electron den-
sity of the whole reactive system into densities of the reactants [6]. For their unique,
unbiased definition the minimum principle of the (reactant/promolecule)-referenced
functional of the entropy-deficiency is required.
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Hence the generalized FF indices of these reactant subsystems, measuring the elec-
tron-density derivatives of molecular fragments with respect to their overall electron
populations or the amount of CT between them, must contain the derivative of the
information functional itself with respect to the differentiated electron population
parameters, calculated at their prescribed values enforced by the constraints:

∂ I (N)/∂Nα =
∑

j

{[
∂µ j (N)/∂Nα

]
G j (Nα)+ µ j (Nα)

[
∂G j (N)/∂Nα

]}
or

∂ I (NCT)/∂NCT =
∑

j

{[
∂µ j (NCT)/∂NCT

]
G j (NCT)+µ j (NCT)

[
∂G j(NCT)/∂NCT

]}
.

(12)

The relevant chain-rule expressions for the FF and charge-affinity quantities then read:

	α(r) =
(
∂ρα(r)
∂ I

)(
∂ I

∂Nα

)

and 	CT,α (r) =
(
∂ρα(r)
∂ I

)(
∂ I

∂NCT

)

, (13)

where the first factor in these products reflects the dependence of the subsystem den-
sity upon the information content for the current values of the electron-population or
charge-separation constraints. Indeed, both the information and the constraint parts
of the variational principles of Eq. (10), which influence the optimum fragment dis-
tributions, should affect the physical properties of the reactants, e.g., their charge
sensitivities.

3 Stockholder principle derived from additive and non-additive information
measures

As an illustration consider the local partitioning problem of Eq. (4), in which the
molecular electron/probability density at point r is divided into atomic contribu-
tions, π = AIM, in accordance with the conditional probabilities (share factors)
P(AIM|r) = {P(α|r) = pα(r)/p(r) = ρα(r)/ρ(r)} ≡ P(r); here P(α|r)stands for
the probability that electron at r belongs to atom α, etc. It has been shown else-
where [6–14] that for the purpose of obtaining the optimum probability densities
p(r) = {pα(r)} of bonded-atoms,

∑
α pα(r) = p(r), which resemble the most the

reference distributions p0(r) ≡ {p0
α(r)} of the free (separated) atoms (FA) defining

the promolecular distribution p0(r) = ∑
α p0

α(r), the most appropriate information
measure is the overall entropy-deficiency functional of Kullback and Leibler [22,23],

�Sadd.
[
p(AIM)|p0(FA)

]
=
∑

α

∫

pα(r) ln

(
pα(r)
p0
α(r)

)

dr

≡
∑

α

∫

�Sα
(

pα(r)|p0
α(r)

)
dr

≡
∫

�Sadd.
(

p(AIM; r)|p0(FA; r)
)

dr, (14)
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also called the relative (“cross”) entropy, missing information, or the directed diver-
gence. The associated global information principle using the probability normalization
constraint,

δ

{

�Sadd.[p(AIM)|p0(FA)] −
∫

µ(r)
∑

α

pα(r)dr

}

= 0, (15)

then yields [6–9] the Hirshfeld (stockholder) division [25].
The promolecular references also determine the initial conditional probabilities

P0(FA|r) =
{

P(α0|r) = p0
α(r)/p0(r) = ρ0

α(r)/ρ
0(r)

}
≡ P0(r). (16)

This local partitioning problem can be alternatively formulated in terms of the missing-
information density �Sadd.(p(AIM; r)|p0(FA; r)) of Eq. (14), which can be conve-
niently expressed in terms of the conditional probabilities P(r) and P0(r):

�Sadd.(p(AIM; r)|p0(FA; r))

= p(r)
∑

α

(
pα(r)
p(r)

)

ln

{[(
pα(r)
p(r)

)/(
p0
α(r)

p0(r)

)](
p(r)
p0(r)

)}

= p(r)
∑

α

P(α|r) ln

[(
P(α|r)
P(α0|r)

)(
p(r)
p0(r)

)]

= p(r) ln

(
p(r)
p0(r)

)

+ p(r)
∑

α

P(α|r) ln

(
P(α|r)
P(α0|r)

)

≡ �S(p(r)|p0(r))+ p(r)�Sadd.(P(r)|P0(r)). (17)

It should be further observed that in the local partitioning problem the overall distribu-
tions p(r) and p0(r) as well as the promolecular conditional probabilities of FA, P0(r),
are fixed. Therefore, only the molecular conditional probabilities of AIM, P(r), are
to be determined from the corresponding (entropic) Euler equations, which define the
optimum shapes of bonded atoms. The optimized information density for this partition
is thus given by

�Sadd.
(

P(r)|P0(r)
)

=
∑

α

�Sα
(

P(α|r)|P
(
α0|r

))
,

(18)
�Sα

(
P(α|r)|P

(
α0|r

))
= P(α|r)ln

[
P(α|r)/P

(
α0|r

)]
.

Moreover, since the conditional probabilities must satisfy the normalization
constraint of Eq. (8), the associated information principle must enforce this (local)
subsidiary condition through the use of the appropriate Lagrange multiplier µ(r).
Therefore, the corresponding (local) rule of the maximum “likeness” of the bonded
atoms to their non-bonded analogs reads:
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δ

{

�Sadd.(P(r)|P0(r))− µ(r)
∑

α

P(α|r)
}

= 0. (19)

The associated Euler equations for the optimum conditional probabilities defining the
AIM pieces of the molecular electron density thus read:

∂�Sadd.
(

P(r)|P0(r)
)
/∂P(α|r)− µ(r)

= ∂�Sα
[

P(α|r)|P
(
α0|r

)]
/∂P(α|r)− µ(r)

= ln
[

P(α|r)/P
(
α0|r

)]
− [µ(r)− 1]

≡ ln
[

P(α|r)/P
(
α0|r

)]
− lnC(r)

≡ ln
{

P(α|r)/
[
C(r)P

(
α0|r

)]}
= 0, α = 1, 2, . . . (20)

It can be straightforwardly demonstrated [6–14] that these Euler equations indeed
give rise to the stockholder partitioning of Hirshfeld (H) [25]. It directly follows from
the preceding equation that

P(α|r)/[C(r)P(α0|r)] = 1 or P(α|r) = C(r)P(α0|r). (21)

Using this result in the normalization constraint of conditional probabilities then
gives

∑

α

P(α|r) = C(r)
∑

α

P(α0|r) = C(r)
[∑

α

ρ0
α(r)

]

/ρ0(r) = C(r) = 1

or P(r) ≡ PH(r) = P0(r). (22)

The optimum (local) IT partitioning of the molecular electron density thus reads:

ρH
α (r) = ρ(r)[ρ0

α(r)/ρ
0(r)] ≡ ρ(r)P(α0|r) = ρ0

α(r)[ρ(r)/ρ0(r)] ≡ ρ0
α(r)w(r),

∑

α

ρH
α (r) = ρ(r). (23)

Here the molecular (sybsystem-independent) enhacement factor w(r) modifies in the
molecule the free-atom density ρ0

α(r) into the associated bonded-atom distribution
ρH
α (r), while the promolecular share-factor P(α0|r) determines the participation of
αth AIM in ρ(r). It also directly follows from Eq. (22) that

�Sadd.
(

PH(r)|P0(r)
)

= 0. (24)
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Therefore, the Hirshfeld partitiong exactly eliminates the additive part of the free-
atom referenced entropy deficiency of the local conditional probabilities of bonded
atoms relative to the associated promolecular references.

To summarize, the optimum (Hirshfeld) conditional probabilities (share factors),
PH(r) = {P(αH |r)} are equal to those defining the promolecule, P0(r) = {P(α0|r)} :

P(αH|r) = ρH
α (r)/ρ(r) = pH

α (r)/p(r) = P(α0|r) = ρ0
α(r)/ρ

0(r) = p0
α(r)/p0(r).

(25)

This equality constitutes the familiar stockholder rule [25]: the bonded atom “share”
P(αH|r) in the molecular “profit” ρ(r) is determined by its share P(α0|r) in the
promolecular “investment” ρ0(r).

One of the remarkable features of this partitioning is that the density of the overall
entropy deficiency between the molecular and promolecular electron probability den-
sities [see Eq. (14)], which determines the total missing-information functional in the
stockholder-AIM resolution,

�S(p(r)|p0(r)) ≡ �Stotal(pH(r)|p0(r))

= �Sadd.(pH(r)|p0(r))+�Snadd.
(

pH(r)|p0(r)
)
, (26)

is exactly equal to its additive component:

�S(p(r)|p0(r)) = p(r) lnw(r) =
[
∑

α

pH
α (r)

]

ln
[

pH
α (r)/p0

α(r)
]

=
∑

α

pH
α (r)ln

[
wH
α (r)

]
≡ �Sadd.

(
pH(r)|p0(r)

)
, (27)

due to the the common (molecular), unbiased enhancement factor for all bonded atoms,

wH
α (r) ≡ pH

α (r)/p0
α(r) = w(r) = p(r)/p0(r), α = 1, 2, . . . (28)

In other words, the equality of Eq. (27) implies that for this particular partitioning
the non-additive information distance between the (molecularly-normalized) proba-
bility distributions pH(r) of the bonded atoms and those characterizing the free atoms
p0(r) vanishes identically:

�Snadd.
(

pH(r)|p0(r)
)

= 0, (29)

and hence also the overall functional �Snadd.[pH|p0] = 0. The normalization-
constrained minimum principle of �Sadd.[pH|p0] thus implies the associated mini-
mum of the (positive) �S[p|p0] = �Stotal[pH|p0].

The stockholder division rule can be thus alternatively defined as the one which
exactly eliminates the non-additive entropy-deficiency contributions of the fragment
(molecularly-normalized, free-atom referenced) probability distributions:
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�Snadd.(p(r)|p0(r)) = �Stotal(pH(r)|p0(r))−�Sadd.(pH(r)|p0(r)) = 0. (30)

Finally, the information-distance density �Sadd.[p(AIM; r)|p0(FA; r)] of Eq. (13)
can be alternatively expressed in terms of the unknown (variational) enhancement
factors w(r) = {

wα(r) = pα(r)/p0
α(r)

}
of bonded atoms:

�Sadd.(p(AIM; r)|p0(FA; r)) =
∑

α

p0
α(r)wα(r) lnwα(r) ≡ �Sadd.(w(r)). (31)

The associated local information principle for determining these enhancements must
then involve�Sadd.(w(r)) as the relevant information density and the constraint of the
exhaustive partitioning,

∑

α

pα(r) =
∑

α

p0
α(r)wα(r) = p(r), (32)

enforced by the Lagrange multiplier ξ (r):

δ{�Sadd.(w(r))− ξ(r)
∑

α

p0
α(r)wα(r)} ≡ δ(w(r)) = 0. (33)

The partial differentiations of this auxiliary function of the subsystem enhancements
then give the associated Euler equations for the optimum w(r):

∂(w(r))
∂wα(r)

= p0
α(r) {lnwα(r)− [ξ(r)− 1]}

≡ p0
α(r)[lnwα(r)− ln D(r)] = 0, α = 1, 2, . . . , (34)

and hence wα(r) = D(r). Finally, from the local value of the constraint one recovers
the equalization of all local enhancement factors of AIM at the molecular enhancement
w(r) value, which marks the stockholder partitioning [Eq. (28)]:

∑

α

p0
α(r)wα(r) = D(r)

∑

α

p0
α(r) = D(r)p0(r) = p(r) or

D(r) = wH
α (r) = w(r). (35)

4 Non-additivities in the Kohn-Sham limit

In the Kohn-Sham (KS) limit [2] of DFT, referring to the hypothetical system involving
the non-interacting electrons, which give rise to the same ground-state electron density
ρ = ρ[v] as in the real (interacting) system, the electron density is expressed as the sum
of contributions from N -lowest (occupied) KS spin-orbitals: ρ(r) = ∑

k |ϕk(r)|2 =∑
k ρk(r). The non-interacting subsystems are thus identified by the subsets {ϕα} of
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these orbitals ϕ ≡ {ϕα} = {ϕk}, k = 1, 2, . . ., N , defining the associated electron
densities:

ρα(r) =
∑

l∈α
|ϕl(r)|2. (36)

They determine specific partition schemes of the molecular density in this non-
interacting limit, π = {ϕα}, ρ(r) = ∑

α ρα(r), with the ultimate division into N
independent MO components {ρk}.

It should be realized that for the fixed external potential the Vne[ρ] energy contri-
bution is additive with respect to the density partitioning, so that the only source of
non-additivity in the electronic energy is due to the complementary functional FHK[ρ]
of Eq. (2). However, since the electronic repulsion is switched off in the hypotheti-
cal KS system, the only source of the energy non-additivity is then due to the non-
interacting (s) kinetic energy:

Ts[ρ] = T total
s [ϕ] = −1

2

N∑

k=1

∫

ϕ∗
k (r)�ϕk(r)dr ≡

N∑

k=1

Tk[ϕk]

= 1

2

N∑

k=1

∫

∇ϕ∗
k (r) · ∇ϕk(r)dr = 1

8
I F
s [ρ], (37)

where we have introduced the KS functional I F
s [ρ] for the overall Fisher information

in the probability-amplitude representation for the N -component system, in which
each occupied KS spin-orbital determines the separable piece of the electron density
[16–18,54,55],

I F
s [ρ] = I F,total

s [ϕ] = 4
N∑

k=1

∫

|∇ϕk(r)|2dr ≡
N∑

k=1

I F
k,k[ϕk], (38)

and I F
k [ϕk] = 8Tk[ϕk]. It should be observed that each fragment of Eq. (36) exhibits

in this limit the fragment kinetic energy given by the sum of {Tk[ϕk]} components
corresponding to the subsystem KS-orbitals,

Tα[ρα] =
∑

l∈α
Tl [ϕl ]. (39)

Therefore, in the KS limit the total and kinetic energies are exactly additive in the
MO resolution. Indeed, the KS orbitals constitute the independent (stationary) states of
each MO component of the non-interacting system, so that the probability-current and
the Fisher-information/kinetic energy non-additivities exactly vanish. This is no longer
the case in the (orthogonalized) AO/basis-function resolution, χ = {χ1, . . . , χm}, in
terms of which MO are expressed, ϕ = χCKS; here (m × N ) rectangular matrix
CKS = 〈χ |ϕ〉 groups the expansion coefficients of these MO linear combinations of
AO (LCAO MO). Indeed, the expectation value of the kinetic energy is then given by
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the trace of the product of the non-diagonal matrices grouping the Charge-and-Bond-
Orders (CBO),

γKS = 〈χ |
(

N∑

k=1

|ϕk〉〈ϕk |
)

|χ〉 = 〈χ |φ〉〈φ|χ〉 = CKSCKS† =
{
γKS

u,w

}
, (40)

the AO representation of the projection operator onto all (ground-state occupied) KS
MO, and the associated AO matrix elements of the kinetic energy operator,

T =
〈

χ

∣
∣
∣
∣T̂

∣
∣
∣
∣χ

〉

=
{

Tu,w = −1

2

〈

χu

∣
∣
∣
∣�

∣
∣
∣
∣χw

〉}

, (41)

Ts[ρ] = T total
s [χ] = tr

(
γKST

)
. (42)

This expression and the associated additive component in the AO resolution,

T add.
s [χ] =

m∑

u=1

γKS
u,u Tu,u, (43)

give rise to the associated AO non-additive kinetic energy,

T nadd.
s [χ] =

m∑

u=1

m∑

v=1

γKS
u,v

(
1 − δv,u

)
Tv,u = 2

m−1∑

u=1

m∑

v=u+1

γKS
u,vTv,u . (44)

It is proportional to the corresponding non-additive Fisher information at this resolu-
tion level [55,61], measuring the CG functional of the non-interacting system:

I F,nadd.
s [χ ] = 4

m∑

u=1

m∑

w=1

∫

γKS
u,w(1 − δu,w)∇χ∗

w(r) · ∇χu(r)dr ≡
∫

f nadd.
s (r)dr

≡ 2
∫

f̄ nadd.
s (r)dr = 8T nadd.

s [χ]. (45)

Here, f̄ nadd.
s (r) denotes the non-additive Fisher information (CG) density per elec-

tron pair of the hypothetical KS system. Its interacting-system analog f̄ nadd.(r) in the
SCF MO theory has been previously designed as a useful tool for locating the chemical
bonds in molecules [55,61].

5 Non-additive Fisher-information in electron-localization function

In the real (interacting) molecular systems there is no additivity of FHK[ρ] and T [ρ]
in both the MO and AO resolutions. Consider, e.g., the non-additivities in the Fisher
[16–18] local measure of the information content in the given, normalized probability
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density p(r) = ψ2(r), ∫ p(r)dr = 1, where ψ(r) stands for the (real) probability
amplitude:

I F[p] ≡ ∫ f (r)dr = ∫ p(r)[∇ln p(r)]2dr =
∫ |∇ p(r)|2

p(r)
dr = 4

∫

|∇ψ(r)|2 ≡ I F[ψ].
(46)

It characterizes the distribution “sharpness” (localization, determinacy) and provides
a complementary descriptor of the probability distribution to the global Shannon [19]
entropy,

I S[p] ≡ −∫ p(r)lnp(r)dr, (47)

which reflects the distribution “spread” (delocalization, indeterminacy).
In the spin-resolved DFT one examines the energy functionals of spin densities

{ρσ (r)}, for the spin-like electrons occupying the
{
ψσ = {ψσi }} MO,

ρσ (r) =
occd.∑

i∈σ

[
ψσi (r)

]2
. (48)

The kinetic energy density in this MO resolution,

τσ (r) =
∑

i∈σ
|∇ψσi (r)|2, (49)

is thus proportional to the sum of additive Fisher information densities in the amplitude
representation:

τσ (r) = 1

4
f add.
σ (r). (50)

The leading term of the Taylor expansion of the spherically averaged (Hartree-
Fock) conditional pair-probability of finding in distance s from the reference electron
of spin σ at position r the other spin-like electron then reads [59],

Pσσc (s|r) = 1

3
Dσ (r)s2 + · · · , (51)

where

Dσ (r) = τσ (r)− |∇ρσ (r)|2
4ρσ (r)

= −1

4
[ f total
σ (r)− f add.

σ (r)] = −1

4
f nadd.
σ (r) ≥ 0.

(52)
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We have explicitly indicated above that the function Dσ (r) defined in the preceding
equation can be identified as being proportional to the negative non-additive compo-
nent of the Fisher information in this spin-resolved MO resolution [6,61].

The appropriately calibrated square of its inverse, known as ELF [59], has been
successfully used as the probe of the electron localization in molecules [59,60,76,77].
A somewhat improved behavior is observed in the DFT-tailored simple inverse of this
function, known as IT-ELF [60]. In Fig. 1 we have compared the perspective views
of these functions for N2,NH3,PH3 and B2H6. These ELF functions convincingly
validate the use of this local probe as an indicator of the localization of the valence elec-
trons in the bonding and non-bonding (lone-pair) regions of these illustrative molecular
systems. Indeed in the homonuclear diatomic N2 one detects in both plots the typical
accumulation of electrons between the nuclei due to the formation of the triple N≡N
bond and the accompanying increase in the localization of the lone pair electrons in
the non-bonding regions of both atoms, a clear manifestation of the accompanying sp
hybridization. The three localized N–H bonds are also clearly visualized in both NH3
panels of Fig. 1; a similar ELF patterns are detected in the PH3 part of the figure. The
final B2H6 plots are also seen to successfully locate the bonding electrons of the four
terminal B–H bonds.

6 Contra-gradience probe of chemical bonds

The non-additive Fisher information density in the AO resolution (Eq. 45), defined
for the singly occupied spin-orbitals ψ = χC = {ψk, k = 1, 2, . . . , N } of the real
(interacting) molecular system, e.g., those from the SCF MO or KS calculations, reads:

I F,nadd.[χ] = 4
m∑

k=1

m∑

l=1

∫

γk,l
(
1 − δk,l

)∇χ∗
l (r) · ∇χk(r)dr ≡

∫

f nadd.(r)dr

≡ 2
∫

f̄ nadd.(r)dr = 8T nadd.[χ ]. (53)

where

γ = 〈χ |
(

N∑

k=1

|ψk〉〈ψk |
)

|χ〉 = 〈χ |ψ〉〈ψ |χ〉 = CC† = {
γu, w

}
. (54)

Its density per electronic pair, f̄ nadd.(r), has been recently advocated [55,61] as
a sensitive probe of the presence of chemical bonds, with the bonding regions being
associated with the largest (valence) f̄ nadd.(r) < 0 basins between atoms. The sur-
rounding f̄ nadd.(r) > 0 (anti-bonding) valence regions and the core regions of the
negative f̄ nadd.(r) then exhibit the familiar electron reorganization (promotion) effects
on the constituent atoms, e.g., the valence AO hybridization, core polarization by the
valence electrons, etc.

An extensive numerical analysis of the applicability of this CG probe of chemical
bonds [61], reporting its implementation within the standard SCF MO calculations
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Fig. 1 Comparison between the
ELF and IT-ELF functions for
N2,NH3, PH3 and B2H6 on
selected planes of section: along
the bond axis (N2), including
three hydrogen atoms (NH3 and
PH3), and passing through both
terminal BH2 groups (B2H6)
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Fig. 1 continued
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Fig. 2 The perspective view of the f̄ nadd.(r) < 0 basins (upper panel) and the contour map of f̄ nadd.(r) in
the molecular plane (lower panel) of HF; the positive/negative contours are represented by the solid/broken
lines, respectively. The same contour convention is observed in Figs. 3, 4

to illustrative diatomic and polyatomic systems, have validated the adequacy of this
novel concept in the chemical interpretation of the computed electronic structure of
molecular systems. In Figs. 2, 3, 4 we present representative results of such an analysis
for HF, H2O and butadiene.

It follows from the first panel of Fig. 2 that there are some small core regions on
the fluorine atom of the negative values of f̄ nadd.(r), reflecting the nodal structure of
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Fig. 3 The same as in Fig. 2 for H2O

its 2s orbital, besides the largest basin extending over the bonding part of the valence
shells of the two atoms, where the chemical bond is located. As also reflected by the
contour map in the second panel of the figure, this dominating electron inflow region
of the diminished Fisher information, which marks the accumulation of the valence
electrons delocalized between the two atoms, are surrounded by the f̄ nadd.(r) > 0
environment of the electron-outflow regions. The latter exhibit the cylindrical polar-
ization/hybridization of the heavy atom, reflecting its promotion in the presence of
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Fig. 4 The contour maps of f̄ nadd.(r) in butadiene: in the molecular plane (upper panel), and in perpendic-
ular cuts passing through the two carbon atoms of the peripheral (middle panel) and central (lowest panel)
C–C bonds, respectively
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the hydrogen, and the H→F charge transfer (CT). The relatively large, and almost
symmetrically placed bonding region, which excludes the 1s inner shell of F, testifies
to a strong covalent component in H–F bond, as indeed expected for this interaction
between the two electronically “hard” atoms.

In the water molecule (Fig. 3) one detects two overlapping, outer basins of the nega-
tive non-additive Fisher information in the O–H bonding regions, and two small inner
shell-regions of the negative CG density. The bonding basins are located between
the corresponding pairs of nuclei, which define these localized single bonds, and the
lowering of the CG density in each bond is seen to be the strongest in the direction
linking the two nuclear attractors. The overlapping character of these two regions of
the negative non-additive kinetic-energy, reflected by the present non-additive Fisher-
information probe, indicates delocalization of the bonding electrons of one O–H bond
into the bonding region of the other chemical bond, as indeed implied by the delocalized
character of the occupied canonical MO. The contour map for the cut in the molecu-
lar plane also reveals a strong buildup of this information/kinetic-energy quantity in
the lone-pair region of oxygen, and—to a lesser degree—in the non-bonding regions
of two hydrogens. This effect should indeed be expected for the nearly tetrahedral
sp3-hybridization promotion of the heavy atom.

The first of the contour maps in Fig. 4 testifies to the efficiency of the CG crite-
rion in localizing all nine bonding regions in butadiene, a relatively more “spherical”
basins for the six C-H bonds, and more “ellipsoidal” ones for the three C–C bonds.
It should be realized at this point that the molecular cut of this panel reflects only the
σ bonds between the neighboring carbon atoms and misses the effects due to their
partial π components, which add to the resultant contour values shown in the remain-
ing diagrams corresponding to the perpendicular cuts along the peripheral and central
C–C bonds. The differences between these two additional plots and the molecular-
plane map of the first panel in the figure thus reflect the extra contributions due to
the partial π components of these three C–C bonds. It follows from these two maps
in the bond-planes, perpendicular to the molecular plane passing through all nuclei,
that the π bond between the neighboring peripheral carbons is much stronger than its
central counterpart. This is in agreement with conjectures from the independent results
obtained using alternative measures of the chemical bond multiplicity [6,29,42,78].

7 Conclusion

In this article we have stressed the role of the supplementary information-theoretic
variational principles in determining the optimum distributions of the electron proba-
bilities/densities in molecular fragments, generated for specific interpretation purposes
in chemistry. The information and constraint parts of these extremum information rules
influence the shape and physical properties of such subsystems, e.g., their in situ charge
sensitivities. The complementary additive and non-additive components of alternative
measures of the information content can be used as tools for exploring the electronic
structure of molecules. We have illustrated the use of the complementary additive
and non-additive components of both the global and local measures of the entropy-
deficiency (missing-information), defined either in terms of the subsystem electron
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probabilities themselves or the associated conditional probability distributions, in the
simplest scenario of the local partitioning of the molecular electron density. It was
demonstrated that all these information principles generate the familiar stockholder
partitioning scheme of Hirshfeld. Its generalization to the subsystem partitioning of
the two-electron densities has also been reported [6,12].

The additivity of the energy contributions in the hypothetical KS (non-interacting)
system in the MO resolution has been stressed, and the system non-additive kinetic
energy (Fisher information) in the AO resolution has been defined. The corresponding
non-additive information terms in both the MO and AO resolutions of the real (inter-
acting) system have been then used as criteria for the localization of electrons and of
the chemical bonds in molecules. The representative applications of these non-addi-
tive Fisher-information densities fully confirm their usefulness in extracting a useful
chemical interpretation from the computed electron distributions in several illustrative
molecular systems. The inverse of the MO-non-additive kinetic-energy (Fisher infor-
mation) density was shown to give rise to the ELF concept, while the AO-non-additive
kinetic-energy (Fisher information) generates the recently proposed CG indicator of
the presence of chemical bonds. The numerical data reflecting the overall Fisher infor-
mation decrease in the molecular bonding regions, which quantitatively describe the
electron delocalization/covalency effects, can be also generated by numerical integra-
tion [55,79]. This analysis will be the subject of a separate report.

Most of existing theoretical interpretations of the origins of the covalent chemical
bond at molecular equilibrium geometry emphasize, almost exclusively, the potential
(interaction) aspect of this phenomenon, focusing on the mutual attraction between the
accumulation of electrons between the two atoms (the negative “bond-charge”) and the
partially screened (positively charged) nuclei. The ELF and contragradience criteria,
which reflect the non-additive kinetic-energy/Fisher-information terms, adopt the com-
plementary view by stressing the importance of the kinetic-energy bond component.
In accordance with the molecular virial theorem, however, the overall kinetic/Fisher-
information data only blur the picture of the subtle information origins of chemical
bonds. As we have emphasized in the present analysis, the overall kinetic energy
change due to chemical bond formation, relative to the separated atoms, exhibits a net
increase at the equilibrium positions of the nuclei, reflecting the overall contraction
of the electronic density in the presence of the remaining nuclear attractors in the
molecule. Let us again recall that the lowering of the kinetic energy component is
observed only at an early approach of atoms when they form the chemical bond, at
large internuclear separations. Only by focusing on the non-additive part of this com-
ponent can one uncover the real information origins of chemical bonds, and define the
useful local probes for their localization and eventually—the quantitative information
descriptors based upon the kinetic energy/Fisher-information.
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